对火星轨道变化问题的最后解释
书迷正在阅读:无限神装在都市、秘巫之主、这家图书馆有问题、系统精灵才是真主角、海贼ZERO、带着火影重生日本东京、林安安景天安夏全球灾变之末日游戏小说免费阅读全文、领主在上、无限系统掠夺、超神学院之我是僵尸
heelementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent.Thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability.ThisresultappearstobeinsomeagreementwithLaskar's(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr.However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury.Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements. Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5). 3.2Time–frequencymaps Althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans.Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.Berger1988). Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar's(1990,1993)frequencyanalysis. Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength.Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT. Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti T,thenextdatasegmentrangesfromti δT≤ti δT T,whereδT?T.WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn Treachesthetotalintegrationlength. WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams. Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart. Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.Thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements. WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofGbytes). Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN 2integration.InFig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.WecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN 2integration.Thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement. 4.2Long-termexchangeoforbitalenergyandangularmomentum Wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H.GandHareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.LisrelatedtotheplanetaryorbitalenergyEperunitmassasE=?μ2/2L2.Ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.Non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations. InFig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationN 2.Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheverticalcomponent(H-H0)oftheinnerfourplanetscalculatedfromthelow-passfilteredDelaunayelements.E0,G0,H0denotetheinitialvaluesofeachquantity.Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofthetotalofnineplanets.Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets. Comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets.Thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets.Anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.Thiscanbeseeninthepanelsdenotedasinner4inFig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury.However,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections. 4.4Long-termcouplingofseveralneighbouringplanetpairs Letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements.Figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminN 1andN?2integrations.Wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange.Inparticular,VenusandEarthmakeatypicalpair.Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.Thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy.Thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations.CandidatesforperturbersareJupiterandSaturn.AlsoinFig.11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem.MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem. ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange.Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf.Brouwer&Clemence1961;Boccaletti&Pucacco1998).Thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe).Hence,theeccentricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange.Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbedbythejovianplanets.ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair. Asfortheouterjovianplanetarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs.However,thestrengthoftheircouplingisnotasstrongcomparedwiththatoftheVenus–Earthpair. 5±5×1010-yrintegrationsofouterplanetaryorbits Sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability.Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonlytheouterfiveplanets(thefourjovianplanetsplusPluto).Theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span.Orbitalconfigurations(Fig.12),andvariationofeccentricitiesandinclinations(Fig.13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains.Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage. Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10. 5.1ResonancesintheNeptune–Plutosystem Kinoshita&Nakai(1996)integratedtheouterfiveplanetaryorbitsover±5.5×109yr.TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto.Themajorfourresonancesfoundinpreviousresearchareasfollows.Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion.SubscriptsPandNdenotePlutoandNeptune. MeanmotionresonancebetweenNeptuneandPluto(3:2).Thecriticalargumentθ1=3λP?2λN??Plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr. TheargumentofperihelionofPlutoωP=θ2=?P?ΩPlibratesaround90°withaperiodofabout3.8×106yr.ThedominantperiodicvariationsoftheeccentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion.ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962). ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP?ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.Whenθ3becomeszero,i.e.thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclinationofPlutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°.Whenθ3becomes180°,theinclinationofPlutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again.Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989). Anargumentθ4=?P??N 3(ΩP?ΩN)libratesaround180°withalongperiod,~5.7×108yr. Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16).However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig.17).ThisisaninterestingfactthatKinoshita&Nakai's(1995,1996)shorterintegrationswerenotabletodisclose. 6Discussion Whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets.JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.Higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealSolarsystem.Thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(Ito&Tanikawa1999,2001).WhenwemeasureplanetaryseparationsbythemutualHillradii(R_),separationsamongterrestrialplanetsaregreaterthan26RH,whereasthoseamongjovianplanetsarelessthan14RH.Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets.Terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.Theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.Jovianplanetsarenotperturbedbyanyothermassivebodies. Thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets.However,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsisO(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofO(eJ).Heighteningofeccentricity,forexampleO(eJ)~0.05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26RH.Thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span.Ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofSolarsystemplanetarymotionisnowon-going. AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics. ——以上文段引自Ito,T.&Tanikawa,K.Long-termintegrationsandstabilityofplanetaryorbitsinourSolarSystem.Mon.Not.R.Astron.Soc.336,483–500(2002) 这只是作者君参考的一篇文章,关于太阳系的稳定性。 还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。